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Abstract— Integration of planning and execution for
single-agent systems has received considerable attention
and numerous interesting approaches have been proposed.
This is not the case for multi-agent systems, however. In
this paper, we describe one approach to representing joint
team activities using a Finite State Machine augmented
with synchronization primitives for orchestration of group
activities.  This representation encodes a sequence of
activities that can be distributed across a team of robots
and executed in a coordinated manner. We then show
how such a representation can be mapped onto a
behavior-based formalism for execution, as supported by a
distributed, multi-robot control architecture, CAMPOUT.
We demonstrate the proposed mechanisms within the
context of a challenging task, where two rovers collectively
carry an extended container over rough terrain.

Index Terms — Team sequencing, tight coordination,
distributed control architecture,
1 Introduction
NASA’s enterprises are planning numerous high-
priority missions, which involve fleets of highly
autonomous cooperating agents ranging from constellations
of satellites in Earth orbit to robotic communities for
planetary outposts. For instance, The Magnetotail
Constellation DRACO (Dynamics, Reconnection, And
Configuration Observatory) is the Solar Terrestrial Probe
(STP) mission [8]} will use about 100 nanosatellites in order
to generate the first global time-evolving maps of the fields
and flows in the magnetosphere. Other proposed NASA
missions plan to use groups of miniature, instrumented
rovers of mass on the order of hundreds of grams [11].
Such nanorovers permit mobility-based science surveys on
planetary surfaces with a small fraction of the science

payload expected for currently planned, and future, rover
missions.
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With a constellation of as many agents as is needed for
such missions and the limited ground station
coverage/capability (for technical & cost reasons) an
autonomy function is vital. A challenge is thus to
coordinate the activities of the agents in a coherent manner
and subject to constraints imposed by the task, system, and
the environment.

Most work in multi-robot coordination has to date
been limited to tasks such as collective estimation [1, 2]
(e.g-, mapping and localization) cooperative foraging [3],
cooperative box pushing [4] etc, where tight coordination
of the activities of the robots is not required. Tightly-
coupled coordination tasks are characterized by constraints
imposed on the activities of one robot as a function of the
state (e.g., position, velocity, etc.) of others and require
both spatial and temporal coordination of activities of the
team. Collective estimation and foraging tasks can be
performed independently by each robot and do not require
a tight coordination of team activities beyond possible task
division. Cooperative box pushing requires tighter
cooperation but can be accomplished with turn-taking
schemes where each robot can alternate in pushing one end
of the box towards a goal. But the spatial distribution of
the robots and the timing of their activities are not critical
since the box rests on a surface. Formation keeping tasks
require even tighter coordination both spatially and
temporally. But the strictest tasks in terms of coordination
are those where tight temporal and spatial coordination is
vital. For example, cooperative mobile object grasping,
manipulation, and handling [5-7] (e.g., lifting and carrying,
not pushing, a piano up the stairs) requires matriculate
timing and precise spatial coordination of each robot in
order to maintain grip of the object while manipulating or
handling it.

We have developed a Control Architecture for Multi-
robot Planetary OUTpost (CAMPOUT) which provides
mechanisms for a range of coordination mechanisms
suitable for both loosely coupled tasks as well as for tightly
coupled tasks. In our treatment of the architecture, we
emphasize the plan representation and execution aspects
and discuss an approach for distributed planning and
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Figure 1 Schematic overview of CAMPOUT and its hierarchical organization in terms of primitive behaviors, composite
behaviors built from primitive behaviors and group behaviors that are composed from coordination of behaviors across multiple
robots. Each robot runs an instance of this architecture and coordinates activities through group behaviors, which is facilitated

through the communications behaviors.

execution in the context of a task of cooperative object
transportation using two rovers.

2 CAMPOUT

In a nutshell, CAMPOUT is a distributed control
architecture based on a multi-agent or behavior-based
methodology, wherein coordinated and cooperative group
activities arise from coordination of behaviors across a
team of robots/agents.  Higher-level functionality is
composed by coordination of more basic behaviors under
the downward task decomposition of a multi-agent planner
(see figure 1). In its current implementation, task
decomposition is done by hand and encoded in as a
distributed script/plan, which is then executed by the agents
in coordination. We will describe how plans are devised,
represented, and executed by CAMPOUT and also describe
how we can automate the task of plan generation in
distributed multi-robot systems.

Robotics is a highly multidisciplinary field, and
requires efficient integration of many components
(perception, mapping, localization, control, learning, etc.)
that use different representations, frameworks, and
paradigms (classical control theory, Al planners, estimation
theory, data fusion, computer vision, utility theory, decision
theory, fuzzy logic, multiple objective decision making
etc.). CAMPOUT provides the infrastructure, tools, and
guidelines that consolidate a number of diverse techniques
to allow the efficient use and integration of these
components for meaningful interaction and operation. This
is facilitated through a few elementary architectural
mechanisms for behavior representation, behavior
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composition, and team coordination and the interfaces
between these. CAMPOUT is thus extensible and scales
freely with regard to behavioral mechanisms and protocols
it can host and fuse, re-mappable inter-robot
communications it can support, and the overall ability to
functionally integrate  heterogeneous, multi-purpose
platforms.

2.1 Behavior representation

In our architectural methodology we formalize a
behavior, b, as a mapping, b: P* x X — [0; 1], that relates
each percept sequence pe P* and action x € X pair, (p, x),
to a preference value that reflects the action’s desirability.
The percept describes possible (processed or raw) sensory
input and the N-dimensional action space is defined to be a
finite set of alternative actions. The described mapping
assigns to each action x € X a preference, where the most
desired actions are assigned 1 and undesired actions are
assigned 0, from that behaviors point of view. Note that
this definition of a behavior does not dictate how the
mapping is to be implemented but provides a general recipe
for a behavior with a well-defined interface (useful when
composing behaviors regardless of their roles in a behavior
hierarchy). This representation does not exclude
implementation using a look-up-table, a finite state
machine, a neural network, an expert system, control laws
(such as PID etc.), or any other approach for that matter.
Note also that this representation does not restrict us to
reactive behaviors since it could have internal state. In that
sense, each behavior can be implemented using whichever
approach is appropriate. Finally, traditional, single-valued
behaviors fall within this representation because, b: P*



—> X can be represented by a multi-valued output where all
x are associated with O but the single x which is selected by
the behavior.

2.2 Behavior composition

Behavior composition refers to the mechanism used
for building higher-level behaviors by combining lower-
level ones. This is achieved through the coordination of
the activities of lower-level behaviors within the context of
a high-level behavior’s task and objective. An explicit
design goal of CAMPOUT has been to support not one but
an arbitrary number of Behavior Coordination Mechanisms
(BCMs). In fact, the architecture can be extended by
incorporation of new behavior coordination mechanisms.
Since different BCMs often require different behavior
representations, CAMPOUT uses a multi-valued behavior
representation, which is general enough for a large class of
applications. BCMs can be divided into two main classes:
arbitration and command. CAMPOUT supports both
classes. For a detailed overview, discussion, and
comparison of behavior coordination mechanisms see [8].

2.3 Group coordination

In order to cooperate and collectively contribute to a
common task the robots must cooperate and coordinate
their activities. The coordination of a group of robots
seems to have many similarities to behavior coordination
within a single robot. The overarching idea for group
coordination in CAMPOUT is to formulate the problem as
the coordination of multiple distributed behaviors, across
a network of robots, where more than one decision maker
is present. Behavior coordination is basically concerned
with resolving or managing conflicts between mutually
exclusive altermatives and between behavioral objectives.
This is, meanwhile, true for individual as well as group
decision making. In this sense the difference between
individual and group decision making is inessential and
both can be studied in the same framework.  Behavior
coordination mechanisms that are typically used for
coordination of behaviors of one robot can then be used for
coordination of behaviors running on a network of robots.
This way control loops can be produced that use sensors on
one robot to drive a different robot. This mechanism is
very powerful and the fundamental technique used in
CAMPOUT for generating group behaviors (see figure 1).

Behavior coordination in multi-robot systems has
received relatively little attention. One approach proposed
in [9] uses inhibition and suppression across a network of
heterogeneous robots augmented with motivational
behaviors that can trigger behavior invocation based on
some internal parameters that measure progress. A similar
approach was proposed in the ALLYU architecture [10],
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which uses port arbitration as the main mechanism for
multi-robot behavior coordination. Both these approaches
can be viewed as the extension of subsumptive-style
arbitration to multi-robot coordination. Recently, work in
progress is investigating the extension of the 3T
architecture [7] to multi-robot coordination.

The above approaches as well as most multi-robot
architectures invariably have two things in common. First,
multi-robot coordination mechanisms are limited to only

" Behavior

Figure 2 Networked robotics and resource sharing
elements of CAMPOUT that enable definition of
group coordination behaviors.

one approach and second which mostly tend to be based on
arbitration rather than a command fusion schemes. We
maintain that arbitration and command fusion mechanisms
are complementary and a system implementation will
typically make use of both. Command fusion mechanisms
are inherently used for coordination of simultaneous
activities and hence are more suitable for tightly-coupled
tasks than arbitration mechanisms.

CAMPOUT can support an arbitrary number of
behavior coordination mechanisms suitable for specific
tasks. We have chosen to support, but not limit the
architecture to, arbitration wusing ALLIANCE and
ALLYU’s subsumptive-style and behavior sequencing
using discrete event systems (a finite-state-machine
mechanism). Additionally, muiti-objective behavior
coordination is supported by CAMPOUT for command
fusion. As we will show, we use the finite-state-machine
formalism (regular expressions) as a representation for
plans and group activities.

In CAMPOUT, multi-robot cooperation arises from
coordination of multiple behaviors that reside on not one
but a group of robots (see figure 2). To support this view,
behavior coordination mechanisms should be extended to



Figure 3 Transport of an extended object requiring the tightly coupled co- ordination of multiple robot. (left) Column
formation for long traverse. (right) Row formation for precision placement.

support multi-robot coordination. = The behaviors and
hence the robots can communicate implicitly by interaction
through the environment or explicitly using sensory
feedback or explicit communication. The first two
approaches, interaction through the environment and
sensory feedback, do not require any explicit form for
architectural support as long as the robots have the
necessary sensing capabilities to facilitate such interaction.
These forms for interaction can be difficult and often
computationally demanding, that is why most multi-robot
systems resort to a form of explicit communication.
CAMPOUT provides a rich and efficient infrastructure for
explicit communication to facilitate  multi-robot
cooperation. Using this infrastructure, behaviors on one
robot can interact with behaviors on other robots. In
general the infrastructure defines a network of resources
that can be shared among the robots. These resources
include behaviors, sensors, and actuators. Thus a behavior
on one robot can be driven by a sensor on another robot or
even contribute to the control of a different robot. This
idea is depicted in figure 2, where behavior composition
can be achieved across several robots.

3 Plan representation and execution

In this section, we describe how the architectural
components of CAMPOUT can be used to describe plans
that represent group activities so that they can be executed
by a distributed set of robots. We use a challenging task of
collective object handling/transportation to describe these
planning capabilities. Briefly, the task is to have two
rovers carry an extended (2.5 m) container from a ‘landing
site’ to a deployment area (see figure 3). Such an extended
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container would be difficult, if not impossible, to deploy
using a solitary robot.

We have retrofitted two of our Sample Return Rovers
(SRR&SRR2K) with a gimbal mounted on a cross-brace
between the shoulders. The gimbal is not actuated but is
fully instrumented with 6DOF force-torque sensors and
pots and offers some mechanical compliance. The gimbal
arrangement and two of the coordinated transport
formations are shown in Figure 3. The coordinated
transport task in open, uneven térrain requires a tightly-
coupled, close coordination of the activities of the two
robots. This is accomplished by some 20 behaviors,
organized in a hierarchy within CAMPOUT. Here, we will
only concentrate on a subset of those behaviors that are
representative of the type of group behaviors that we can
accomplish. In particular, we will focus on the description
of a group behavior used for compliant formation keeping
with the objective to assume a desired formation. The
formation can be defined by the angle between the two
rovers and the heading of the formation towards a target
(see figure 4). For instance a row formation is formed
when the two rovers are positioned side-by-side (see right
picture in figure 3).

3.1 Compliant formation keeping

The compliant formation keeping group activity is
invoked to configure the two robots into a given formation,
defined by the relative angle between them, ¢, and the
relative angle towards the target, ¥ (see figure 4). A Face
Target behavior provides the angle to the target then the
Turn group behavior reconfigures the formation to a
desired one. Two constraints make this a challenging task.



First, transformation between the current and target
formations must ensure that the container is handled safely,
i.e., the distance between the robots, d, should always
remain within some tolerance margin, dp, < d < dya,
determined by the distance between the grip points of the
rovers, L (200 cm), and the longitudinal translation in the
glmbal Tg‘mbal (X2 cm). lLe, L-2Tgimb31 <d < L+2Tg‘mbals
which implies that the distance between the two rovers
should be maintained within a margin of 8cm (4T gimpa). A
set of compliance behaviors, described later, monitor the
state of the load and constrain the movement of the rovers
to guarantee this requirement.

Second, it is required that the container does not
collide with the mast on the lead rover (see figures 3 and
4), which could lead to damaging the mast, the
gripper/gimbal, or the container, and/or dropping the
container. The shaded area around the lead rover indicates
the safety zone (-35 to 35 degrees) where the container
beam cannot enter because it will then collide with the
mast. We used the following distributed strategy for
accomplishing this task, with respect to the second
constraint, and hand-coded this strategy as a group
behavior:

1. The lead rover turns in place as far as possible
until either By, is reached or it cannot move
further due to the safety zone constraint.

2. The follower pivots around the lead rover until

either Olformation 1S Teached or it cannot move further
due to the safety zone constraint.

This sequence will alternate the two until the goal
configuration is reached. Note that once one rover moves
it also frees the other rover from being constrained by the
safety zone. In this way, incremental progress is made
towards the goal configuration while respecting the second
constraint imposed by the safety zone. This strategy is
encoded as a Distributed Finite State Machine (DFSM)
(see figure 5), which is basically a Finite State Machine
augmented with communication links. Each state
represents the activation of a (set of) behavior(s) and
transitions between the behaviors are triggered by events as
indicated on the arrows. These events can be generated
either by perceptual feedback or explicit communication
between robots. Note on figure 5 that the DFSM
representation has two parts: one that runs on rover 1 and a
replicate that runs on rover 2. Note also that a finite state
machine is a behavior coordination mechanism that is
supported by CAMPOUT for behavior arbitration. The
states, represented by bubbles in the figure, correspond to
primitive or composite behaviors implemented within
CAMPOUT.
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Figure 5 Distributed plan used for the compliant formation-
keeping task. The arrows represent events that cause transitions
and the dashed curves represent events caused by explicit
communication of signals.

Revisiting the formation keeping strategy, we see in
the figure that one rover turns (using Turn behavior) until it
is done (i.e., cannot turn further) then hands the token to
the other rover by a signal and waits. The Turn behavior
has different implementation for each of the rovers; for the
follower it consists of Ackerman turns and for the leader it
consists of turn-in-place. The Wait behavior in each of the
rovers consists of a number of behaviors including
compliance behaviors. Le., when the other rover starts
moving/turning the waiting rover monitors the state of the
load (through the sensors of the gimbal) and then triggers a
compliance behavior to assure that the container is handled
safely in accordance with the distance constraint describe
above. This is accomplished by crabbing in the direction
of the container in order to center the load (based on pot-
meter readings) and to reduce the forces on the gimbals
(based on the force-torque sensor readings).

Using this strategy, our experimental
demonstrated:

studies

® 40-t0-50 meter autonomous traverses of outdoor
irregular terrain (maximal slope of 9°) by two rovers
(SRR/SRR2K) in the tightly coupled transport of an
extended container,

autonomous change of formation by two rovers carrying
an extended container under compliant control, and

continuous visual guidance to a designated deployment
site from 50 m, heading error < 1°; distance error < 5%
at 8m by use of a visual template.

More importantly, we demonstrated how group
activities can be encoded using the underlying mechanisms



provided by CAMPOUT and encoded essentially as a
distributed finite state machine (which itself is a behavior
coordination mechanism) across a group of robots. As
described in the next section, we are currently investigating
robust ways to string multiple group activities together.

4  Distributed Team Sequencing

While the distributed finite state automaton approach
benefits from conceptual simplicity, manually crafting such
automata becomes a tedious error-prone task as the size of
the group behaviors increases. Unfortunately experience
within the multi-agent community has shown that
significant numbers of unanticipated interactions between
agents (like rovers) show up as people attempt to manually
engineer interacting controllers between more than 3 agents
[11]. These interactions lead to activity termination at best
and mission termination at worst.

We can apply teamwork models [11, 12] to reduce the
complexity problem by giving the rovers a shared team-
state. Here each rover can monitor its own performance
and selectively transmit results to its teammates.
Partitioning the system’s state into local rover states and
shared team-states facilitates this selective transmission.
While the rovers keep their local states private, they
communicate to keep team-states consistent across teams in
the remote outpost.

4.1 Representing team sequences

In addition to regular behaviors found in the original
approach, team sequences also include team behaviors.
These define coordination points where the team
synchronizes before and after executing the team activity
consisting of group and other behaviors. For instance, a
team behavior to control our 2-rover transportation activity
might have S behaviors to coordinate the rovers while as
they approach their payload, pick it up, transport it, assume
formation, and put it down. Just like group and composite
behaviors, team activities are defined in terms of more
primitive team activities as well as behaviors.

From a representational standpoint, team activities are
similar to group behaviors. The only additions to turn a
group behavior into a team activity involve defining teams
to perform sub-behaviors and assigning roles to teammates.
More precisely, injecting a model of teamwork into an
existing hierarchical system, like CAMPOUT, involves
adding three features:

e generalization of group behaviors to represent team
activities with role assignments,
e representation of team and/or sub-team states, and

e restrictions to only let a teammate modify a team state
through a team activity.

2122

Figure 4 Formation between the two robots with follower on
left and leader on right. The formation is defined by the angle
«a between the two robots. Desired heading is given by the
relative heading angle y. The shaded area on the lead rover is

a safety zone where the container beam should not enter to
prevent collisions with its mast.

Instead of having each rover follow a separate
sequence of composite and group behaviors, the rovers
follow roles in a single team activity. This lets each rover
actively monitor its own progress and passively track its
teammates’ performance. This passive monitoring process
maintains robustness by facilitating the creation of general-

purpose error detection techniques based on shared team-
state.

While this example’s impoverished number of rovers
does not sufficiently motivate the need for teamwork, other
mission proposals describe over a dozen, or even a
hundred, rovers to support a robotic outpost. To support
teamwork for these larger missions, we must alter the
underlying behavioral architectures to manage each rover
team’s associated team-state. We illuminate these changes
by describing the machinery underlying team activity
execution.

4.2 Performing team behaviors

A team of rovers contains a leader and one or more
followers that jointly intend to accomplish some task by
executing a team activity. Teams dynamically form when
team activity execution starts and dissolve upon
completion. When a team performs a task, it shares a team-
state. This state contains facts like a list of teammates,
their roles in performing the joint task, and other
information to coordinate team activity.

Depending on the team activity, execution manipulates
the behaviors to alter parts of the local and team-state



information. Since team-states are replicated across all
teammates, a rover must broadcast all team-state changes to
maintain consistency. The standard protocol for changing
a team-state is a 3-step process where one rover broadcasts
the change, all teammates broadcast acknowledgements in
turn, and all teammates update their copies upon hearing
everyone else. If a teammate does not respond before a
time-out interval, the original rover rebroadcasts the
change.

While only transmitting team-state changes reduce
communications, the number of broadcasts still implies
bandwidth problems as the rover population increases.
Stopping a rover from broadcasting a change when
teammates can infer it from observation further reduces
communications [11, 13]. For instance, the rovers in our
transportation example do not have to signal the end of a
pickup activity. The mere act of sensing that the bar is
seated properly in the holder tells the rovers that the pickup
activity is over.

5 Conclusions

In this paper, we described CAMPOUT and its
mechanisms for representation and execution of joint team
activities. In particular, we have demonstrated that simple
group activities can be encoded as a distributed finite state

machine (DFSM), which is basically an extension of a FSM:

arbitration mechanism to team coordination. While
DFSMs provide a conceptually simple yet formally
powerful tool for representing team plans, it can be tedious
to hand code them for complex tasks due to a combinatorial
explosion in number of states. We argued that using a
model of teamwork and dynamic task allocation
mechanism can enable a general and powerful solution to
team plan generation and provide protocols for inter-agent
interaction to support reliable execution.

We are currently pursuing this line of research for tasks
involving multiple satellites for space science missions.
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